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900. Romania 

Received 16 July 1979 

Abstract. We develop a new approach to the problem of constraining the TT scattering 
amplitudes by means of the axiomatically proved properties of unitarity, analyticity and 
crossing symmetry. The method is based on the solution of an extrema1 problem on a 
convex set of analytic functions and provides a global description of the domain of values 
taken by any finite number of partial waves at an arbitrary set of unphysical energies, 
compatible with unitarity, the bounds at complex energies derived from generalised 
dispersion relations and the crossing integral relations. From this domain we obtain new 
absolute bounds for the amplitudes as well as rigorous correlations between the values of 
various partial waves. 

1. Introduction 

During the last few years considerable progress has been made in the derivation of 
absolute bounds on pion-pion scattering. The last major improvement was achieved by 
Lopez and Mennessier (1977) who obtained a very impressive lower bound for the 
7rorro S-wave scattering length, a''> -1.75m,'. In spite of this progress, the present 
bounds still remain largely outside the range of phenomenologically reasonable values 
and have a weak constraining power in practical situations. The problem of deciding 
whether these bounds can be further improved or are an ultimate limit of the axiomatic 
theory is therefore of much interest. Concerning the upper bounds it was shown 
recently by Auberson et a1 (1978), by means of an explicit construction, that the best 
bounds known up to now (Bonnier et a1 1975, Lopez and Mennessier 1977) can be 
saturated. On the other hand, for the lower bounds the problem is still open and a 
further improvement of the present values is not excluded. 

The present work is an attempt to investigate this kind of problem along a 
completely different line. We develop a formalism which provides a global description 
of the domain of values taken by a finite number of partial waves at a given set of 
coincident or different energies. The rigorous properties which we take into account in 
this description are analyticity, unitarity, the bounds at complex energies derived from 
generalised dispersion relations (Bonnier and Vinh Mau 1968, Bonnier 1975) and the 
crossing integral relations (Roskies 1970). Other rigorous constraints like positivity, 
convexity and monotony of the various partial waves, Martin inequalities (Martin 1967, 
DitH 1973), as well as the numerical bounds known so far at particular points, can be 
simply introduced in this description. The method can be applied to every isospin 
amplitude as well as to any combination of them. 
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1266 I Caprini and P Dija' 

The main point of our method is the formulation of the rigorous properties of the 
partial wave amplitudes in terms of an extremal problem in some space of analytic 
functions. This problem is formulated and solved in § 2. The applications of this 
problem to 'TTT scattering are discussed in 5 3 .  For simplicity we restrict ourselves to 
TOT' scattering and show first how one can cast the axiomatic properties of the partial 
waves in the canonical form in which the above-mentioned problem was formulated. 
Some numerical results concerning the S and D partial waves, as well as some further 
applications of the method, are presented at the end of the paper. 

The work contains two appendices: in the first one, which is technical, we present the 
proof of a statement made in 5 2. In appendix 2, starting from the bounds available for 
the total amplitude F(s ,  t )  at some particular points (Lopez and Mennessier 1977) we 
derive by a simple method new upper and lower bounds for the partial waves, which are 
useful for our analysis. 

2. Solution of an extremal problem 

In the present section we shall formulate and solve an extremal problem on a convex set 
of analytic functions. The relevance of this problem for the derivation of new rigorous 
results on V'TT total and partial amplitudes will be discussed in the next section. 

We shall consider functions f ( z )  real analytic in the unit disc Iz ~ < 1 and belonging to 
the H" Banach space (Duren 1970). Our problem will be to describe the domain 

9 = {filfi =f(z,), i = 1, .  . . , n, f €  S"} 

where S, is the intersection of the unit sphere of H" with a finite number of 
hyperplanes: 

For simplicity we shall consider here only real non-coincident points z,. Then one can 
easily see that 9 is a closed and convex domain in R". The generalisation to complex z,, 
as well as the inclusion of derivatives of f ( z ) ,  is trivial. As will be shown explicitly in the 
next section the constraints defining the convex set S, are the canonical transcription of 
the unitarity and crossing conditions for the m- scattering amplitudes. 

A solution in a closed form pf the above problem was not actually obtained. Instead 
we were able to express the domain 9 as the intersection of a certain collection of closed 
and convex domains gg, each of them being determined exactly; namely let Bg be the 
domain 

9 g  =Ulf, =f(z,), i = 1, .  . . , n , f c  S*(g))  

where s2(g) is a convex functional set described in the same way as the set s, 
introduced above, with the only difference being that the Hm-norm condition 

l l f l lm 1 (2.1) 

entering the definition of S;, is replaced by the H 2  norm 
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Here g ( z )  is an outer function in the unit sphere of H 2  defined as 

(2.3) 

in terms of a positive weight function p ( 8 )  obeying the conditions 

From the definition given above one can easily verify the relation 9 c gg for every g ( z )  
with the properties (2.3) and (2.4). Actually it can be shown that the stronger result 
9 = n gg holds. The proof of this equality is given in appendix 1. 

Our problem will therefore be the description of the domain gg for a given g ( z ) .  We 
mention that a similar embedding of an extrema1 problem for vector-valued functions 
from H" into H 2  was considered also in connection with the derivation of sum rules for 
Compton scattering (Raszillier 1978, Auberson and Mennessier 1979). 

The starting point of our derivation is the remark that the domain $ 2 ~ ~  is actually 
described analytically by the inequality 

g 

the infimum being taken on the subset of H" defined by the constraints 

With this description of gg its properties of convexity and closedness become trans- 
parent in connection with the convexity and continuity properties of the H 2  norm (2.5). 
We also point out that the frontier of is given by the equality sign in (2.5). 
Accordingly, the problem is to find the expression of the minimal norm (2.5) with the 
constraints (2.6). 

We notice that the first set of conditions (2.6) can be naturally taken into account by 
writing f ( z )  as 

where 

B ~ ( z )  = 1 K = 2 , .  . . , n + l  

and A, are determined in a non-singular way by solving the triangular system 
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As for the function h ( z )  appearing in (2.71, the second set of conditions (2.6) make it 
belong to the set YC defined as 

1 

P K  = CYK - f Ai $K(x)Bi (x )  dx, K = 1, .  . . , 
i = l  -1 

With the above notations the extremum problem to be solved becomes 

4 5  Vi>, I a K l )  = inf llhg - kg112 (2.10) 
h e %  

where 

is a rational function bounded for 0 E. [-T, T I .  We shall solve (2.10) by applying the 
duality theorem for convex sets (Luenberger 1968, Duren 1970). We have 

In writing this equality we took into account Beurling's approximation theorem (Duren 
1970), ensuring that the products g(2)h(z)  generate a dense set in H 2 ,  for h EH" and 
g(z)  defined by the relations (2.3) and (2.4). We shall first calculate the last term in the 
right-hand side of (2.121, which is actually the support functional of the convex set YC 
(Luenberger 1968). By writing the Fourier series 

the support functional of X becomes 

(2.13) 

(2.14) 

Using the same notation the conditions defining the convex YC may be written as 
a3 c 1,Ck = P K  K =  1,. . . , p  (2.15) 

j = O  

where 

If these p conditions are linearly independent then 
j - 1  2, ... rankllCkIIK=i ,...,, = P 
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Df = det 

and we can assume that the determinant 

CP-1 cf cy . . .  c1-l 1 Ci+l 1 . . .  1 

c; c; . . .  ci-1 p CFl . . . c ; - I  
f 

(2.16) 

is different from zero. 
From (2.12) one can see that only the finite values of the support functional are of 

interest for our problem. By comparing (2.14) and (2.15) it follows that this happens 
only when the relation (2.14) can be expressed as a linear combination of the 
expressions (2.15). This means that the equality 

must hold, which, taking into account the assumption following (2.16), gives the Fourier 
coefficients F-K of F([) as 

I '  
F-(K+~)=- 1 ( - ~ ) ' + ' F - ~ D T  K = p , p + l , .  . . (2.17) h j - 1  

where 

(2.18) 

By introducing (2.17) into (2.14) we obtain finally the support functional of YC in the 
form 

10 F-1 . . .  F - P  I 
(2.19) 

Ipp cg . . .  c;? 
We shall now evaluate the first term in the right-hand side of (2.12). To this end we shall 
take explicitly into account the fact that the conditions (2.17) restrict the form of F(J) ,  
more precisely of its non-analytic part, so that we can write 

P 

F(l) = F+(l) + C F-jQj 
j = l  

where F+(l) is the analytic part of F(j): 

and 

(2.20) 

(2.21) 

(2.22) 
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By applying the residue theorem, the analytic part F + ( l )  gives in (2.12) the contribution 

f A, i F+(z,)g(z , )[( l  - z , ) B ~ ( f ) / B n + l ( l ) l ~ = ~ ,  
1=1 , = r  

which, by changing the order of summation and using the relation (2.8) between A, and 
f,, may be written as 

n c F+(z,)f,g(z,X(z - ~ , ) / & + l ( ~ ) I z = z , .  (2.23) 
1 = 1  

As concerns the non-analytic part of F ( [ ) ,  i t  gives in (2.12) the contribution 
P 

C F-iRi 
j = l  

where the numbers Ri are defined according to (2.20) as 

(2.24) 

1 
Ri =% 4 g ( f ) k ( f ) Q j ( O  d l  j = 1, . . . , p .  (2.25) 

By adding the terms appearingin (2.19), (2.23) and (2.24) we can express the supremum 
(2.12) in the final form 

(2.26) 

where the coefficients ti are 

In order to evaluate the supremum (2.26) let us write explicitly the L2 norm of F ( l ) .  By 
using (2.17) we have 

W P 

= 1 F’, + 1 XiiF-iF-i< 1. 
K = O  i , j = 1  

(2.28) 

In the last term we introduced the matrix X defined as 

Mli being the minor of the element situated on the Ith row and ith column in the 
definition (2.16) of A and 



A new method for deriving rigorous results on ITIT scattering 1271 

Let us denote by A I , .  . . , A, the (non-negative) eigenvalues of the positive definite 
matrix X and by U the orthogonal matrix 

u.. If = 1 1. i, j = 1, . . . , p (2.29) 

where v i  are the eigenvectors of X :  

Xu' =Aiv i  i = 1, . . * , p .  

If we now perform a finite change of coordinates by means of the matrix U, i.e. if we 
define 

P 

G - K  = 1 (U-l)KjF-j  K = 1,.  . . , p 
j = l  

G K  = F K  K2O 

we obtain the norm condition (2.28) in the form 

(2.30) 

(2.31) 

(2.32) 

T K  = U-Kl5-1 K = - l ,  . . . , - p .  (2.33) 
1=1 

The evaluation of the supremum (2.32) with the condition (2.31) can be done immedi- 
ately by applying the Cauchy-Schwarz inequality. We obtain 

(2.34) 

Using the relations (2.33) and (2.27) the infinite sum in the last line can be written in 
a closed form: 

(2.35) 

which shows that the computation of k z ( g ,  { f i } ,  {a j} )  requires finally only a finite number 
of algebraic operations. The complete description of the closed and convex domain Bg 
is therefore given by the inequality 

(2.36) 

the expression on the left depending quadratically on the f i ,  as may be seen going back 
again to equations (2.33) and (2.27). 

As we have already mentioned, the domain 9 is obtained by intersecting all the 
above domains Bg for g ( z )  subject to the conditions (2.3) and (2.4). In the present 
approach, performing this intersection amounts to taking the supremum upon g ( z )  of 
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the norms pLz(g,  {fi}, { a ~ } )  which appear in the left-hand side of (2.36). This can be 
done explicitly for the case with no integral conditions (2.6), when (2.36) contains only 
the first term and the supremum upon g ( z )  can be shown to provide exactly the known 
solution of the interpolation problem in H" (Duren 1970, Krein and Nudelman 1973). 
In the present case the supremum of pz(g, { f i } ,  { a K ) )  cannot be obtained through a finite 
algorithm which, in other words, means that the initial H" problem cannot be solved in 
a closed form. The above approach might have nevertheless a considerable practical 
utility. Indeed, each gg is an approximant of 9 from outside and, with a fortunate 
choice of g ( z ) ,  one may hope to approach 9 rather closely. For instance, a useful guess 
proved to be 

2 
- l-CY 

p ( e ) =  1-2CY cos 0+CY2 

(1 - a 2 y  
1 -CY2 

g ( z )  = 

(2.37) 

a E (-1, 1) being a single parameter upon which the supremum in (2.36) has to be taken. 
This p ( 0 )  is equal to the Jacobian of an arbitrary real mapping of the unit circle onto 
itself. The choice (2.37) is therefore equivalent to solving the problem in an infinity of 
H 2  norms, defined for all the unit discs obtained from each other by an arbitrary 
deformation of the frontier. By varying the parameter CY one may expect to obtain a 
good approximation of 9. Numerical calculations for the interpolation problem 
revealed an excellent agreement between the H 2  and the H" solution, which in this 
case is known, and offered useful suggestions as concerns the choice of the optimal CY. 

3. Application to the 7i7i scattering amplitudes 

In this section we shall use the extremum problem solved above for obtaining new 
results about the m r  scattering amplitudes. Essentially, these results refer to the values 
taken by the partial waves at unphysical energies, compatible with analyticity, unitarity 
and crossing symmetry. Unlike the previous treatments of the same subject, our 
method is able to give simple and direct correlations between values taken at coincident 
or different points by various partial waves. 

We shall start by recalling the rigorous properties of the m~ partial waves which 
enter the present approach. We shall then show how these properties can be written in 
the canonical form in which the extremum problem of § 2 was formulated. 

For simplicity we shall treat here only the n-07ro scattering, the inclusion of the 
isospin being straightforward (Bonnier and Donohue 1978). 

We shall consider the noro  partial waves a l ( s )  appearing in the development of the 
total ~ T ~ T ~  amplitude F(s ,  t )  

m 

F(s ,  t )  = (21+ l )a l (s)Pl[1+2t / (~ -4)] (3.1) 
l = O  

and the S-matrix elements 

Here s and t are the Mandelstam variables and the pion mass was taken equal to 1 
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The axiomatic field theory predicts for the functions S l ( s )  a domain of analyticity in 
the complex 5 plane. For convenience we shall consider from this domain the disc 

I S  -261 G 26 (3.3)  

cut along the real axis between 4 and 52. In this disc Sf(s) are real analytic functions 
and, along the physical cut s 2 4 ,  they satisfy the unitarity condition 

Ish)/ s 1 4 6 . ~ ~ 5 2 .  (3.4) 

Furthermore, on the frontier of the disc (3.3),  a rigorous upper bound for /Sl (s) l  is 
available, i.e. 

Ish)/ s M ( s )  I S  - 261 = 26. (3 .5)  

This bound can be explicitly computed using (3.2) and the partial wave projection 

h ( 4 - s )  1 

a r ( s )  = F(s ,  t - ) E ' [ ( l - A )  dh  

taking into account the upper bound 

derived for the total amplitude at complex s and t by Bonnier and Vinh Mau (1968)  and 
Bonnier (1975) ,  on the basis of dispersion relations on algebraic manifolds in the 
Mandelstam plane. The explicit form of B(s,  t )  is found in the above references. 

Actually, an upper bound of the type (3.5) can be computed directly for every 
complex s inside the analyticity domain. The choice of a large domain like ( 3 . 3 )  seems 
nevertheless to be advantageous, as it allows an additional use of the analyticity and 
unitarity condition (3.4).  This is expected to improve our knowledge of the partial wave 
values, having in mind that the bounds (3.7) are far from exploiting the full content of 
the analyticity, unitarity and crossing symmetry. 

Another rigorous property which we take into account in our approach is crossing 
symmetry. This is known to be equivalent to an infinite set of integral relations (Roskies 
1970) involving a gradually increasing number of partial waves, in the form 

f [ * 4 ,  I P  ( s )q i ( s )  ds = O  p = 0 , 1 , .  
1-0 0 

For instance, the first two relations (3.8), containing only the S and D waves, are 

(4  - s ) ( 3 s  - 4)a0(s)  ds = 0 

Io4 (4  -s)*[4(s  - l ) a o ( s )  + ( 4  - s)a2(s)]  ds = 0 .  
(3 .9)  

For our purposes it is of interest to note that 41 ,~ ( s )  are finite on 0 G s S 4 and vanish at 
s = 4 at least like (4  - s). 

The crossing relations (3.8) can be expressed, through (3 .2) ,  in terms of S l ( s ) ,  giving 
a similar set of integral relations 

(3.10) 
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where 

(3.11) 

As already mentioned, we will be interested in correlating values of partial waves at 
unphysical energies, particularly on the real axis 0 < s < 4. Therefore it is useful to 
recall at this point some known rigorous results concerning the behaviour of partial 
waves at particular points in this region. We shall refer here particularly to the S and D 
waves, for which a collection of rather impressive constraints has been obtained by 
various authors (Martin 1967, Common 1968, Grassberger 1973, Dil i  1973). For 
instance, the S wave ao(s) is known to be a convex function on 0 s s s 1.7, having a 
minimum in the interval 1.219 S s S 1,697. Its values at some couples of real points 
satisfy the inequalities found by Martin (1967), namely 

~ ~ ( 0 . 2 1 3 3 )  6 ao(3.2029) 

ao(0.1489) s ao(3.2949) 

~ ~ ( 0 . 3 0 9 2 )  6 ao(3.0826) 
(3.12) 

ads)  < ad4L Vs E (0 ,4) .  

As concerns the D wave, it was shown to be non-negative on 0 < s < 4 and decreasing on 
the interval 1.434 6 s < 4. 

Besides these known properties, we noticed that, starting from some bounds on the 
total amplitude F(s,  t )  (Lopez and Mennessier 1977), we could derive, by a simple 
method, numerical bounds on the partial waves at some particular points. The method 
and some results concerning the S and D waves, which were of interest in our 
applications, are presented in appendix 2. 

We shall now indicate how the study of TT amplitudes can be brought to the 
canonical form of the preceding section. This can be accomplished through the 
following steps. 

First we perform the conformal transformation (Caprini and Dil i  1978) 

12~+i [13( s -4 ) (11s+52) ] '~~  
12s - i[13(s -4)(1 Is + 52)]1'2 z(s) = (3.13) 

which maps the domain (3.3) onto the unit disc 1.z < 1, the cut 4 s s 6 52 being applied 
on the right semicircle and the real segment 0 < s s 4 becoming the diameter -1 6 z 6 
1. 

We define then the real analytic outer functions 

(3.14) 

By construction G l ( t )  have modulus equal to 1 on the right semicircle and Ml(B)= 
Ml(s(B)) on the left one and have no zeros inside the unit disc 121 < 1. In (3.14) we took 
into account the equality Ml(B)i(-t9) which follows from the property of S l ( z )  of 
being real analytic, i.e. S l ( i )  = S l ( z ) .  It is also of interest to point out here that Gl(z) 
behave like In s =1n(l + z ) l i 2  around s = 0, i.e. 2 = -1, and are finite at s = 4, i.e. z = 1, 
as follows from the behaviour of M r ( e )  (Bonnier 1975). 

We consider now the functions 

fi ( 2 )  = Si(z )/GI ( 2  ). (3.15) 
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They are real analytic inside the domain / z  I < 1 and satisfy the boundedness condition 

Ifdd 1 / 2 / < 1  (3.16) 

i.e. they belong to the unit sphere of H“. This fo!lows from (3.4), (3.5) and (3.14). Let 
us next introduce the functions f / (z)  in the crossing integrals (3.10) and split for 
convenience the sum in terms containing only one function f i e  We obtain a set of 
relations of the form 

1 I_, $i,,(X)fi(X) dx = 5 l . P .  

Here the functions $i,p(x) are defined as 

(3.17) 

(3.18) 

with s(x)  and ds/dx being the inverse of (3.13) and the Jacobian of the transformation, 
respectively: 

52(1 + x )  
1 + x  + 12[2(1 +x2)]1’2 

s(x)  = 

ds 624&( 1 - x) 
d x = ( 1 + X 2 ) ’ ~ ~ { 1 + X + 1 2 [ 2 ( 1 + X 2 ) ] 1 ~ 2 } ~  

Moreover, from (3.10) it follows that the numbers &,, satisfy the relations 
M c h,, = f fp p = 0, 1, . . . 

(3.19) 

(3.20) 
i=o  

with cyp defined in (3.1 1). For instance, after some simple calculations the relations (3.4) 
for the S and D waves become 

$o,o(x)fo(x) dx = 4 7  

$O,O(X)  = [ S ( ~ - S ) ] ” ~ ( ~ S  -4)Go(X) ds/dx 
(3.21) 

and 

50,i + 50,z = 8 5 ~  

$O,I(X) = 4 ( 4 - ~ ) ( ~  - l)Go(x) ds/dx 

$ ~ , I ( x )  = (4 - s ) ~ [ s ( ~  -s)]’”G~(x) ds/dx. 

(3.22) 

Actually, the equations (3.16) and (3.17) express the constraints on the TT partial 
waves in the form considered at the beginning of § 2. Suppose first that we are 
interested in finding the range of values of one partial wave a,(s) at some particular 
points si, i = 1, . . . , n, compatible with the above constraints. The method developed in 
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the previous section describes the domain gg of values of the function 

at z ,  = z(s,). In particular, for every admissible function g ( z ) ,  the inequality (2.36) 
describing the domain ag yields an explicit consistency condition among the values 
f, = f i ( z , )  and therefore among a,(s,). From these relations we can use the information 
available on a ! ($ )  at some points in order to constrain a l ( s )  at other points. To this end 
we notice that the norm appearing in (2.36) is a convex function of { f , } .  Therefore, the 
extremum values of one parameterf,, the others being kept fixed, are obtained by taking 
the equality sign in (2.36) and solving with respect to the correspondingf, the equation 
thus obtained. As this equation is quadratic in f i ,  we obtain from it explicit expressions 
for the upper and lower bounds upon one f,, in terms of the remaining values {fi},+,. 
Now, if we restrict ourselves to ao(s) and want to take into account the constraints (3.12) 
and (A2.2), we must introduce in the set {s,}, besides the point so at which bounds are 
sought, the relevant points for these constraints. Clearly, when expressed in terms of 
fo(z) the above constraints remain simple linear inequalities among thef,. The problem 
of bounding the amplitude at interior points was thus reduced to finding the extrema of 
an explicit expression of fll the parameters being subject to a finite number of linear 
constraints. 

With this method we derived upper and lower bounds on the S and D waves at some 
unphysical energies. In our numerical applications we have treated the partial waves 
only separately so far, i.e. with no crossing relations of the form (3.8) taken into account, 
and introduced into the problem a rather small number of interior constraints. A more 
complete numerical application of the formalism raises no special difficulties, requiring 
only an increased computational time. 

Some of the results obtained in this way are, however, interesting. For instance, we 
studied the problem of a iower bound on the S-wave scattering length ucO = ao(4). 
Actually s = 4 is a point on the frontier and cannot be properly included in our 
formalism. Nevertheless, having in mind the last Martin inequality (3.12) we looked for 
a lower bound upon ao(so), the point so being close to s = 4, this yielding a lower bound 
for aoo too. If only the constraints (3.4) and (3.5) are considered, the maximum 
modulus principle applied for fo(z) = S o ( z ) /  Go(z )  givest 

By making use of the additional constraints (3.12) and (A2.2) and of the convexity of 
ao(s),  we could improve this value up to aoo > -1.7 which practically coincides with the 
best result known at present (Lopez and Mennessier 1977) mentioned in the intro- 
duction, Our analysis shows that a more complete use of the rigorous constraints 
improves our knowledge of the amplitude values and suggests that, proceeding along 
this line, a further improvement of the present lower bound is possible. 

With the same method we also calculated new bounds for S and D waves at interior 
points. Several results concerning the S wave were reported previously (Caprini and 
Dilh 1978). Below we give, for illustration, some of our new results for the D wave. By 

? This value is slightly better than the bound a0">-3.3 obtained with the same method by Bonnier (1975), 
since we used, for computing MO(@)  from the Bonnier formula, better bounds on F ( 2 , 2 ) ,  F ( 3 , 2 )  and F($ $1 
(Lopez and Mennessier 1977). 
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making use of the bounds (A2.7) derived by us in appendix 2 we obtained 

~ 2 ( 0 * 1 )  c 2 8 . 5 5  

a2(0.4) < 10.4 

a2(1-2) c 2.22 

02(1.5)< 1.51. 

As we mentioned earlier, the most interesting feature of our method is its ability to 
connect the admissible domains of values taken by different partial waves. This 
connection is established through the integral relations (3.8) which are treated exactly 
in our approach. Practically, the joined domain of values for a given number of partial 
waves is obtained by intersecting with the hyperplanes (3.20) the separate domains for 
each partial wave, these depending explicitly on the parameters &, as may be seen from 
(2.36). In this way the content of crossing symmetry, expressed in the integral relations 
(3.8), can be more fully taken into account. 

The above description gives immediately new rigorous correlations among values of 
different partial waves at coincident or different energies. For instance, if So(so) and 
S 2 ( s 2 )  are the S-matrix elements for the S and D waves taken at the arbitrary points su 
and s2 respectively, we can write down the simple inequalities 

where 

and the functions Gi(x)  and I)I/,~(X) are defined in (3.14) and (3.22), respectively. 
We obtained these relations by writing for both the S and D waves the inequality 

(2.36) with n = 1, p = 1 and g ( z )  taken for simplicity of the form (2.37) with LY = x i ,  and 
subsequently eliminating through (3.22) the parameters entering the integral 
conditions. From this procedure it follows that the relations (3.23) are not the optimal 
ones: an optimisation upon g ( z )  actually gives the sharpest inequality connecting the 
values So(so) and S2(s2 ) .  

From these relations one can obtain rigorous correlations between the positions of 
resonances in various partial waves. Indeed, if we recall that the poles of $ ( z )  on the 
second Riemann sheet induce zeros of S l ( z )  on the first sheet (Bonnier and Donohue 
1978), we have to set S,(sl)=O in the inequalities of the type (3.23) (actually for 
complex s r ) ,  being left with rigorous correlations among the points sI where resonances 
of spin 1 can be located. 

With the admissible domain of values described above, the problem of computing 
bounds on a particular partial wave by taking into account the influence of the others is 
in principle solved. We think that in this way it would be possible to answer the open 
question of saturating the lower bounds on the S wave. Actually, our formalism also 
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yields bounds for the total amplitude F(s ,  t ) .  
of appendix 2, F(s ,  t )  can be bounded by 
number of partial waves, in the form 

Indeed, as results from the relation (A2.9) 
two linear expressions involving a finite 

n 2 2  (3.24) 

where a, can be any partial wave n 2 2, Im(s ,  t )  and IM(s ,  t )  being known functions. 
Knowing explicitly the admissible domain for the partial waves a ~ ( s ) ,  the problem of 
bounding F(s ,  t )  amounts then to a standard numerical optimisation. An application of 
particular interest would be to investigate the special values F(2 ,2) ,  F(3 ,2)  and F($,  $), 
which were used as input in the computation of the Bonnier bound (3.5) and in the 
particular bounds of appendix 2. By taking a large enough number N of partial waves in 
(3.24), in order to exploit to a large extent the crossing symmetry contained in the 
integral constraints (3.8), the output values of the above F(s ,  t )  must become better 
than the input ones or at least will reproduce them, if an ultimate limit has indeed been 
reached. The numerical investigation of such a problem is a project for future work. 

Appendix 1 

We shall give in this appendix the proof of the equality 9 = n gg. The intersection is 

taken here upon the set, denoted in what follows by $2, of the outer analytic functions 
g(z),  described by the relations (2.3) and (2.4) of § 2. 

Using the definitions of the domains 9 and gg given in § 2 and having in mind the 
remark leading to relation (2.5), it is easy to see that the problem which must be solved is 
to prove the equality 

g 

( A l . l )  

where ~ 2 ( g ,  { f i } ,  { a K } )  is the minimal L2 norm defined in (2.5) with the constraints (2.6) 
and pm({f i} ,  {aK})  denotes the minimal L" norm 

k " 1 ,  b K } )  = inf llfllm (A1.2) 

taken with the same constraints. 

~ ~ f ~ ~ m  2 ligfi12, which holds for every g E s2, and consequently we have 
We notice first that for an arbitrary function ~ E H "  we can write the inequality 

llfllm 2 ~~Pllgfll2. 
g s S 2  

As a matter of fact this inequality is saturated, as can easily be verified by the explicit 
construction of a suitable g ( z ) .  If we now take the infimum of both norms for functions 
f ( z )  subject to the constraints (2.6) and take into account the fact that inf sup 2 sup inf, 
we obtain the inequality 

(A1.3) 
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We have therefore to prove the saturation of this inequality. To this end we shall resort 
again to the duality theorem (Duren 1970, Luenberger 1968) for both the H" and H 2  
minimal norms. Using the same technique as in § 2, we obtain finally from (A1.3) the 
equivalent inequality 

We recall that k ( j )  is the rational function defined in (2.1 l), G ( J )  and F ( l )  are arbitrary 
functions from the unit spheres of L' and L2,  respectively, while the convex set 7C to 
which h ( & )  belongs was defined in § 2. For convenience we shall rewrite here the 
integral conditions (2.9) defining X in the form 

00 

1 h;d',=PK K = 1 , .  . . , p  
;=0 

where h; are the Fourier coefficients of the analytic function h E H " ,  i.e. 

h ( c ) =  f hili Ill 1 
i = O  

and 
1 

d', = I-, $K(x)Bn+l(X)XJ dx K = 1, . . . , p. 

(A1.5) 

(A1.6) 

(A1.7) 

It is useful to recall also from § 2 that the structure of the support functional in (A1.4) 
restricts the form of the functions G(c)  which are relevant for the supremum to 

P 

G ( l )  = G+(S) + c G-;P; ( l ) /S i  (A1.8) 

where G + ( [ )  is an arbitrary analytic function belonging to H' and the functions P,([) 
are defined by 

/ = I  

x det 

where 

I 
dx d:' . . .  -, -, . . .  9 l ( X ) B , + l ( X  )XP c e-x 

A?-' I 

These expressions are similar to equations (2.20) and (2.21) of 8 2. 



1280 I Caprini and  P Diid 

In order to prove the saturation of (A1.4) we shall proceed in two steps. First, let us 
consider a truncated problem, obtained by replacing the convex set YC defined in (A1.S) 
by the convex YCN, consisting of functions h ( i )  obeying the conditions 

N 

j = O  
(Al .  10) 1 h j d k = P ~  K = 1 ,  . . . , p ,  N > p .  

By comparing (A1.lO) with (A1.5) one can see that this is equivalent to setting the 
higher moments d k ,  j > N  of $ K ( x )  equal to zero. Denoting by pg,” and piN’ the 
minimal norms corresponding to the convex YCN, we shall first prove the equality 

(A1.ll)  

By applying the duality theorem this amounts to showing the saturation of an inequality 
similar to (A1.4), namely 

I 

(Al.4’) 

Let us denote by Gd”([) the extrema1 function for the supremum on the left-hand side 
of (A1.4’), which is known to exist (Duren 1970). From the arguments preceding 
(A1.9) it follows that G!?’ will have the form 

(Al .  12) 

where P ~ ~ ” ’ ( ~ )  are now polynomials in lli; of degree equal to N - j ,  defined by 

(Al .  13) 

As follows from (A1.12) and (A1.13) the lowest negative frequency of GbN’([) is ( -N.  

By multiplying (A1.12) by IN we hence obtain an analytic function belonging to 19’. 
Let us write for this function the Riesz factorisation (Duren 1970): 

(A1.14) 

where B ( i )  is the inner factor and 4 ( i )  is the outer one. We can now define two 

N ( N l  i G o  ($9 = B ( l M ( i )  
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(-1)j &=--det 
’ A  

(A1.15) 

dP-1 
/31 d:‘ . . .  dj-‘ 1 dj+’ 1 e - .  1 . 
: 

p p  d i  . . .  dj-1 dj+’ . , . d;-1 P 

(A1.16) 

Using the fact that by definition IIGbN’II1 G 1, we see that gb”(5) is an outer function with 
llgbN’lI< 1 while FbN’(() belongs to L2 and IIFbN’ii2 G 1. This means that gb”(5) and 
Fb”(5) satisfy the properties required for g ( 5 )  and F ( l )  in the right-hand side of 
(A1.4’), and moreover, due to (A1.16), they saturate this inequality. The relation 
( A l . l l )  was thus proved. We point out that the above argument was based on the 
factorisation of Gb”([), which was possible due to the particular form (A1.12) of its 
non-analytic part, specific for the truncated problem. A factorisation of a function G(5) 
having the form (A1.8) is not known. 

As the equality (Al.9) holds for every N, it will apply also for the limits of both sides 
when N + a?, if they exist. We pass therefore to the second step of our proof, which 
consists in verifying the equality: 

(A1.17) 

In what follows we shall treat explicitly the L“ norm, the proof for the L2 case being 
similar. We start by noting that, using the expressions (A1.8) and (A1.12) of the 
optimal functions in (A1.4) and (A1.4’), respectively, we can write WE,” and pm in the 
form 

SUP I@(d (Al .  18) 

lim W!?)({fi}, { @ K ) )  = k K ( { f r } ,  { @ K ) )  for K = 2, a?. 
N-tm 

iN) 

‘IG/i,s 1 
G ( O =  G+( i )+  ,G-,P:N)iO/d‘l 

Woo ( ( f A - 7  {@KH = 

(A1.20) 

In order to show the equality of (A1.18) and (A1.19) we shall use the following trick: let 
us take @(G) fixed at a value K and consider the minimum norm problems: 

(A1.21) 

(A1.22) 
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It is not difficult to see that the minimal norms (A1.21) and (A1.22) are convex 
functions of K .  This implies that kgV) and p m  are equal to the largest solutions of the 
equations 

g c N ) ( K )  = 1 (A1.23) 

and 

S ( K )  = 1 (A1.23') 

respectively. In order to prove the relation (Al.14) it is therefore sufficient to show that 

(A1.24) 

The problem was thus reduced to the study of the minimal norms (A1.21) and (A1.22) 
taken upon the analytic functions G+(l )  E H' and p parameters G-j, constrained by the 
linear relation @(G) = K. As will become clear below, for our purpose we have only to 
consider the minimisation upon G+(07 with the parameters G-, kept fixed. More 
precisely, we have to prove, at fixed K and G - ,  the equality 

where 
P 

" 

(A1.25) 

(A1.26) 

~ ( l )  = - C G-jPj(l)lli 
j = l  

the infimum being taken upon the analytic functions G+(l )  belonging to the hyperplane 

I 1 
X =  [ G+(l)l G ,  E H ' ,  $ G + ( l ) k ( l )  d l  = K - G-j&j = constant . 

j = 1  
(A1.27) 

Indeed, if (A1.25) is true for every set of parameters G-i7 it will hold also for the 
minimum with respect to G-j, and this gives the desired result (A1.24). 

In (A1.25) one may recognise the distances from the functions x ' ~ )  and ,y to the 
hyperplane X. We shall first show that 

(A1.28) 

Using the expressions (A1.9) and (A1.13) in (A1.26) we evaluate the difference 
P 

x ~ ( I ) - x ( ~ )  = C G - j ( p l N ' ( ~ ) - P i ( ~ ) ) / l i  
j = 1  
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Using this expression in the definition of the L‘ norm appearing in (A1.28) and 
changing the order of integration with respect to dx and /d(I, we obtain after some 
simple calculations the upper bound 

where 

(Al .3  1) 

yj being some finite coefficients which result from (A1.29). One can verify immediately 
that is bounded on [-1, 11. This is evident for 1x1 < 1, so that the only points that 
need special study are x = *l. As follows from 8 3, all the functions +j(x) contain a 
factor (4 - s)l’* = (1 - x )  from the crossing functions, and another (1 - x)  from the 
Jacobian ds/dx of the conformal transformation (3.19), which cancel the logarithmic 
singularity of the integral over /dl l  at x = 1, so that at this point $ , ( x )  vanishes. On the 
other hand, at x = -1 the functions &(x)  behave like J’s In s = (1 + x )  In (1 + x),  the first 
factor coming from the crossing functions and the logarithm from the outer function 
G ( x )  defined in (3.14). These factors, together with the factor In (1 + x )  yielded by the 
integral over IdlI, make $(x) to be still finite at x = 1. If we denote now by M the 
maximum of $(x) over [-1, 11, we obtain from (A1.30) 

llx(Ni-xlil < M I *  1xNI dx = 2M/(N+ 1) 
-1 

which gives, for N + CO, the desired result (A1.28). By making use of this result we can 
immediately prove the equality (A1.25). Indeed, let us denote by G\Yi(l) and G+,o(l) 
the functions achieving the minimum in the left- and right-hand sides of this relation. 
The existence of these functions can easily be established using the general theory of 
extrema1 problems (Duren 1970). We can then write 

(Ni  - inf I/G+ - x I / I  6 IIGiNd - x I I I  s IIGYNJ - x ( ~ ) I I I  + IIx X I I I  
G+EX 

By now taking the limit N + CO of both the above relations and using (A1.28) we obtain 
two opposite inequalities 

inf IJG, -xIl1 s lim inf /lG+ -X(N)iII 

lim inf IJG, - x ( ~ ) I I ~  s inf llG+ -,ylll 

G + E  ap N + m  G + E K  

N-m G + E %  G + E %  
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which terminate the proof of the equality (A1.25). Going back, this implies equation 
(A1.24) and consequently the desired result (A1.17). One can easily verify that the 
above arguments can be applied without significant modifications to the L2 norm, for a 
given g E s2. The relation (A1.171, together with the preceding one ( A l . l l ) ,  terminate 
the proof of ( A l . l )  and hence of the equality 9 = n gap. 

B 

Appendix 2 

In this appendix we shall present a simple method for obtaining numerical bounds on 
the partial waves ul(s)  for 0 < s < 4, using as input the numerical information on the 
n-On-' total amplitude F(s,  t ) .  The technique is inspired from our previous work (Dit5 
1973) and some results concerning the S wave were reported elsewhere (Caprini and 
Dil5 1978). 

The starting point in our derivation is a once-subtracted fixed-t dispersion relation, 
with the subtraction term expressed in functions of the S wave: 

A(x, t)Ko(x, s, t )  dx (A2.1) 

where 

1 1 2 
x - s  x - U  4 - t  

Ko(x,s, t)=--+-+-ln 

From (A2.1), by taking into account the positivity property of the absorptive part 
A(x,  t )  for x b 4 and 0 G t s 4, we can bound uo( t )  in terms of the total amplitude F(s ,  t )  
at those values of s and t where the kernel Ko(x, s, t )  has a constant sign in the 
integration range 4 s x < W. For instance, by noticing that Ko(x, 3,;) S 0 for x 2 4 we 
obtained 

ao($)>F($, $)> -8.2 

where we used the lower bound on F(3, $) obtained by Lopez and Mennessier (1977). 
In a similar way the following bounds can be immediately derived: 

-7.25 < F(2 ,  I )  < U ( ] (  1)  < F ( 3 ,  1) < 3.2 

-842 <F($,  $) < u O ( $ )  <F(O, $) < 3-05 

- 7 . 2 5 < F ( 1 , 2 ) < ~ ( , ( 2 ) < F ( 2 , 2 ) < 2 . 9  

--3-3 < F ( 3 ,  0 )  < U o ( 0 )  

U&) < F ( 0 ,  $) < 3.05 

ao(3) < F (  1,  3 )  .< 3.2. 

(A2.2) 

In order to find bounds on the D wave we take the difference of two relations of the 
form (A2.1) written for the same t and different values of s :  

(A2.3) 
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'The Froissart-Gribov representation for the partial wave a l ( t )  

valid for 12 2, together with the positivity of the absorptive part A(x, t )  and of the 
Legendre functions Q,, imply the positivity of the partial waves: 

This last property allows us to define a function with bounded variation on (4, CO), as 
follows: 

(A2.4) 

(A2.5) 

From this relation bounds on a2( t )  can be derived. For instance, by taking SI = 3, s2 = 1, 
t = 2, (A2.5) can be written as 

(A2.6) 

If we define now 

1 
m = inf 

* a 4  (X - 3)(x2 - 1 ) Q 2 ( ~  - I )  

we obtain from (A2.6) the upper bound 

F(3,  2)-F(1, 2) a2(2) c 
4m 

This bound can be evaluated numerically, using the inequalities F (3 ,2 )  < 14.5 and 
F(1,2)  > -7.25 (Lopez and Mennessier 1977) and the value m = 15/2: 

(A2.7) 0 < ~ 2 ( 2 )  < 0.725. 

By applying the same procedure we obtained also the inequalities 

0 < az( l )  < 1.5675 

If we want to find bounds on the higher partial waves 1 a 4  we have to write a 
multiple-subtracted fixed-t dispersion relation for F(s ,  t ) ,  the subtractions being 
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expressed in terms of the first N / 2  + 1 partial waves: 

the explicit form of the kernel K N ( x ,  s, t )  being known. By now proceeding as in the 
case of the D wave, we can write (A2.8)  in the form 

( A 2 . 9 )  

where the functions 

are bounded both from below and above for 0 < s, t < 4, and a,, is an arbitrary partial 
wave with n 2. From the equation (A2.9)  one can easily find bounds for a particular 
partial wave in terms of F(s ,  t )  and the bounds on the other partial waves at the same 
point t. 
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